J. K. SHAH CLASSES
 SYJC - MATHS \& STATISTICS
 PRELIMINARY TEST - 2

Branch - Andheri, Borivali \& Vasai Total Marks : 80

SECTION - I

Q1. (A)Attempt any six of the following

1. Find X and Y if $X+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]$; $X-Y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$

SOLUTION

$$
\begin{array}{rlrl}
X+Y=\left(\begin{array}{ll}
7 & 0 \\
2 & 5
\end{array}\right) & X+Y=\left(\begin{array}{ll}
7 & 0 \\
2 & 5
\end{array}\right) \\
X-Y=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right) & X-Y=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right) \\
2 X=\left(\begin{array}{ll}
10 & 0 \\
2 & 8
\end{array}\right) & 2 Y=\left(\begin{array}{ll}
4 & 0 \\
2 & 2
\end{array}\right] \\
X & =\frac{1}{2}\left(\begin{array}{ll}
10 & 0 \\
2 & 8
\end{array}\right) & Y=\frac{1}{2}\left(\begin{array}{ll}
4 & 0 \\
2 & 2
\end{array}\right] \\
X & =\left[\begin{array}{ll}
5 & 0 \\
1 & 4
\end{array}\right) & Y=\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right]
\end{array}
$$

2. find $\frac{d y}{d x}$ if $y=\sin ^{-1} \sqrt{1-x^{2}}$

SOLUTION

$$
\begin{aligned}
& \text { Put } x=\cos \theta \\
& y=\sin ^{-1} \sqrt{1-\cos ^{2} \theta} \\
& y=\sin ^{-1} \sqrt{\sin ^{2} \theta} \\
& y=\sin ^{-1}(\sin \theta) \\
& y=\theta \\
& y=\cos ^{-1} x \\
& \frac{d y}{d x}=\frac{-1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

3. Find the value of k if the function

$$
\begin{aligned}
f(x) & =\frac{\tan 7 x}{2 x} \\
& =k \quad x \neq 0 \\
& ; x=0 \quad \text { is continuous at } x=0
\end{aligned}
$$

SOLUTION

Step 1
$\operatorname{Lim} f(x)$
$x \rightarrow 0$
$=\operatorname{Lim}_{x \rightarrow 0} \frac{\tan 7 x}{2 x}$
$=\operatorname{Lim}_{x \rightarrow 0} \frac{7}{2} \frac{\tan 7 x}{7 x}$
$=\quad \frac{7}{2}(1)$
$=\quad \frac{7}{2}$

Step 2 :
$f(0)=k$ \qquad given

Step 3 :
Since f is continuous at $x=0$
$f(0)=\operatorname{Lim} f(x)$
$x \rightarrow 0$
$k=7 / 2$
04. Write negations of the following statements

1. $\forall y \in N, y^{2}+3 \leq 7$

Negation: $\exists y \in N$, such that $y^{2}+3>7$
2. if the lines are parallel then their slopes are equal

Using $\quad: \quad \sim(P \rightarrow Q) \equiv P \wedge \sim Q$
Negation : lines are parallel and their slopes are not equal
05. find elasticity of demand if the marginal revenue is Rs 50 and the price is Rs 75

SOLUTION

$$
\begin{aligned}
\operatorname{Rm} & =R_{A}\left(1-\frac{1}{\eta}\right) \\
50 & =75\left(1-\frac{1}{\eta}\right) \\
\frac{50}{75} & =1-\frac{1}{\eta} \\
\frac{2}{3} & =1-\frac{1}{\eta} \\
\frac{1}{\eta} & =1-\frac{2}{3} \\
\frac{1}{\eta} & =\frac{1}{3}
\end{aligned}
$$

$$
\eta=3
$$

6. State which of the following sentences are statements. In case of statement, write down the truth value
a) Every quadratic equation has only real roots
ans: the given sentence is a logical statement. Truth value : F
b) $\sqrt{ }-4$ is a rational number
ans: the given sentence is a logical statement. Truth value: F
7. Evaluate : $\int \frac{\sec ^{2} x}{\tan ^{2} x+4} d x$

SOLUTION PUT $\tan x=t$

$$
\sec ^{2} x \cdot d x=d t
$$

THE SUM IS
$=\int \frac{1}{t^{2}+4} d$
$=\int \frac{1}{t^{2}+2^{2}} d t$
$=\frac{1}{a} \tan ^{-1} \frac{t}{a}+c$
$=\frac{1}{2} \tan ^{-1} \frac{t}{2}+c$
Resubs.
$=\frac{1}{2} \tan ^{-1}\left(\frac{\tan x}{2}\right)+c$
08. if $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right] ; \quad B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ then find $|A B|$

SOLUTION

$$
\begin{aligned}
& A B \\
& =\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \\
& =\left[\begin{array}{ll}
1+3 & 2+4 \\
2+6 & 4+8
\end{array}\right] \\
& =\left[\begin{array}{rr}
4 & 6 \\
8 & 12
\end{array}\right] \\
& |A B|=4(12)-8(6)=48-48=0
\end{aligned}
$$

Q2. (A)Attempt any TWO of the following

1. $f(x)=\frac{3-\sqrt{2 x+7}}{x-1} ; x \neq 1$
$=-1 / 3 \quad ; \quad x=1 \quad$ Discuss continuity at $x=1$
SOLUTION

STEP 1

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 1} f(x) \\
& =\operatorname{Lim}_{x \rightarrow 1} \frac{3-\sqrt{2 x+7}}{x-1} \\
& =\operatorname{Lim}_{x \rightarrow 1} \frac{3-\sqrt{2 x+7}}{x-1} \\
& \frac{3+\sqrt{2 x+7}}{3+\sqrt{2 x+7}} \\
& =\operatorname{Lim}_{x \rightarrow 1} \frac{9-(2 x+7)}{x-1} \frac{1}{3+\sqrt{2 x+7}} \\
& =\operatorname{Lim}_{x \rightarrow 1} \frac{9-2 x-7}{x-1} \frac{1}{3+\sqrt{2 x+7}} \\
& =\operatorname{Lim}_{x \rightarrow 1} \frac{2-2 x}{x-1} \frac{1}{3+\sqrt{2 x+7}} \\
& =\operatorname{Lim}_{x \rightarrow 1} \frac{2(1-x)}{x-1} \frac{1}{3+\sqrt{2 x+7}} \\
& = \\
& \operatorname{Lim}_{x \rightarrow 1} \frac{-2(x \neq 1)}{x-1} \frac{1}{3+\sqrt{2 x+7}} \\
& = \\
& = \\
& x-1 \neq 0 \\
& 3+\sqrt{2+7}
\end{aligned}
$$

$$
\begin{array}{ll}
= & \frac{-2}{3+3} \\
= & \frac{-1}{3}
\end{array}
$$

STEP 2 :
$f(1)=-1 / 3$ \qquad given

STEP 3 :

```
\(f(1)=\operatorname{Lim} f(x) \quad ; f\) is continuous at \(x=1\)
    \(x \rightarrow 1\)
```

2. Write the converse, inverse and the contrapositive of the statement
"if two triangles are not congruent then their areas are not equal"
SOLUTION:
LET $\quad \mathbf{P} \rightarrow \mathbf{Q} \equiv$ if the triangles are not congruent then their areas are not equal

CONVERSE $\quad: \quad Q \rightarrow P$
If the areas of triangles are not equal then they are not congruent

CONTRAPOSITIVE: ~ $\mathbf{Q} \rightarrow \sim \mathbf{P}$
If the areas of the triangles are equal then they are congruent

INVERSE $\quad: \sim P \rightarrow \sim Q$
If the two triangles are congruent then their areas are equal
03. Find $\frac{d y}{d x} \quad y=\tan ^{-1}\left[\frac{6 x}{1-5 x^{2}}\right]$

SOLUTION

$$
\begin{aligned}
& y=\tan ^{-1}\left(\frac{5 x+x}{1-5 x \cdot x}\right) \\
& y=\tan ^{-1} 5 x+\tan ^{-1} x \\
& \frac{d y}{d x}=\frac{1}{1+25 x^{2}} \cdot \frac{d}{d x}(5 x)+\frac{1}{1+x^{2}} \\
& \frac{d y}{d x}=\frac{5}{1+25 x^{2}}+\frac{1}{1+x^{2}}
\end{aligned}
$$

1. Find the volume of a solid obtained by the complete revolution of the ellipse

$$
\frac{x^{2}}{36}+\frac{y^{2}}{25}=1 \quad \text { about } Y \text { - axis }
$$

SOLUTION

STEP 1:

$$
\frac{x^{2}}{36}+\frac{y^{2}}{25}=1
$$

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

$$
a^{2}=36 ; a=6
$$

$$
b^{2}=25, b=5
$$

STEP 2 :
$\frac{x^{2}}{36}+\frac{y^{2}}{25}=1$

$$
\begin{aligned}
& \frac{x^{2}}{36}=1-\frac{y^{2}}{25} \\
& \frac{x^{2}}{36}=\frac{25-y^{2}}{25} \\
& x^{2}=\frac{36}{25}\left(25-y^{2}\right)
\end{aligned}
$$

STEP 3 :

$$
\begin{aligned}
V & =\pi \int_{-5}^{5} x^{2} \cdot d y \int_{-5}^{5} \frac{36}{25}\left(25-y^{2}\right) \cdot d y \\
& =\pi \int^{5} \\
& =\frac{36 \pi}{25}\left(25-y^{2}\right) \cdot d y
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{36 \pi}{25}\left[25 y \frac{-y^{3}}{3}\right) \\
& =\frac{36 \pi}{25}\left\{\left(125-\frac{125}{3}\right)-\left(-125+\frac{125}{3}\right)\right\} \\
& =\frac{36 \pi}{25}\left\{\left(\frac{375-125}{3}\right)-\left(\frac{-375+125}{3}\right)\right\} \\
& =\frac{36 \pi}{25}\left\{\left(\frac{250}{3}\right)-\left(\frac{-250}{3}\right)\right\} \\
& =\frac{36 \pi}{25}\left\{\frac{500}{3}\right) \\
& =240 \pi \\
& \text { cubic units }
\end{aligned}
$$

2. Evaluate: $\int \log \left(1+x^{2}\right) d x$

$$
=\int \log \left(1+x^{2}\right) \cdot 1 d x
$$

$$
=\log \left(1+x^{2}\right) \int 1 d x-\int\left(\frac{d}{d x} \log \left(1+x^{2}\right) \int 1 d x\right) d x
$$

$$
=\log \left(1+x^{2}\right) \cdot x-\int \frac{2 x}{1+x^{2}} \cdot x d x
$$

$$
=\quad x \cdot \log \left(1+x^{2}\right)-2 \int \frac{x^{2}}{1+x^{2}} d x
$$

$$
=x \cdot \log \left(1+x^{2}\right)-2 \int \frac{1+x^{2}-1}{1+x^{2}} \cdot d x
$$

$$
=x \cdot \log \left(1+x^{2}\right)-2 \int 1-\frac{1}{1+x^{2}} d x
$$

$$
=x \cdot \log \left(1+x^{2}\right)-2\left[x-\tan ^{-1} x\right]+c
$$

$$
=\quad x \cdot \log \left(1+x^{2}\right)-2 x+2 \tan ^{-1} x+c
$$

3. If Mr. Rao orders x cupboards, with demand function as

$$
p=2 x+\frac{32}{x^{2}}-\frac{5}{x}
$$

How many cupboards should he order for the most economical deal
SOLUTION

STEP 1: COST

$$
\begin{aligned}
C & =p \cdot x \\
& =\left(2 x+\frac{32}{x^{2}}-\frac{5}{x}\right) \cdot x \\
& =2 x^{2}+\frac{32}{x}-5
\end{aligned}
$$

STEP 2 :

$$
\begin{aligned}
\frac{d C}{d x} & =4 x-\frac{32}{x^{2}}=4 x-32 x^{-2} \\
\frac{d^{2} C}{d x^{2}} & =4+64 x^{-3} \\
& =4+\frac{64}{x^{3}}
\end{aligned}
$$

STEP 3 :

$$
\begin{aligned}
& \frac{d C}{d x}=0 \\
& 4 x-\frac{32}{x^{2}}=0 \\
& 4 x=\frac{32}{x^{2}} \\
& 4 x^{3}=32 \\
& x^{3}=8 \quad \therefore x=2
\end{aligned}
$$

STEP 4 :

$$
\left.\frac{d^{2} C}{d x^{2}}\right|_{x=2}=4+\frac{64}{2^{3}}>0
$$

Cost is minimum at $x=2$

Mr. Rao must order 2 cupboards

1. Using the truth table, examine whether the statement pattern is a tautology, a contradiction or a contingency : $\quad(p \rightarrow q) \leftrightarrow(\sim p \vee q)$

SOLUTION

p	q	$\sim p$	$p \rightarrow q$	$\sim p \vee q$	$(p \rightarrow q) \leftrightarrow(\sim p \vee q)$
T	T	F	T	T	T
T	F	F	F	F	T
F	T	T	T	T	T
F	F	T	T	T	T

Since all values in the last column are ' T ', the given statement is a TAUTOLOGY
02. $f(x)=\frac{\left(e^{3 x}-1\right)^{2}}{x \cdot \log (1+3 x)} \quad ; \quad x \neq 0$

$$
=10 \quad ; \quad x=0 \quad \text { Discuss the continuity at } x=0
$$

Solution:

Step 1

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 0} f(x) \\
& =\operatorname{Lim}_{x \rightarrow 0} \frac{\left(e^{3 x}-1\right)^{2}}{x \cdot \log (1+3 x)}
\end{aligned}
$$

Dividing Numerator \& Denominator by x^{2}

$$
x \rightarrow 0, x \neq 0, x^{2} \neq 0
$$

$$
=\lim _{x \rightarrow 0} \frac{\frac{\left(e^{3 x}-1\right)^{2}}{x^{2}}}{\frac{x \cdot \log (1+3 x)}{x^{2}}}
$$

$$
=\operatorname{Lim}_{x \rightarrow 0} \frac{\left(\frac{e^{3 x}-1}{x}\right)^{2}}{\frac{\log (1+3 x)}{x}}
$$

$$
=\lim _{x \rightarrow 0} \frac{\left(\frac{\left.3 \frac{e^{3 x}-1}{3 x}\right)^{2}}{\log (1+3 x)} \frac{1}{x}\right.}{l}
$$

$$
\begin{aligned}
& =\operatorname{Lim}_{x \rightarrow 0} \frac{\left(\frac{3}{\left.\frac{e^{3 x}-1}{3 x}\right)^{2}}\right.}{\left.\frac{\log (1+3 x)^{3 x}}{3}\right)^{3}} \\
& = \\
& \frac{(3 . \log e)^{2}}{\log e^{3}} \\
& = \\
& \frac{9}{3 . \log e}
\end{aligned}
$$

Step 2 :
$f(0)=10$........ given

Step 3 :
$f(0) \neq \operatorname{Lim}_{x \rightarrow 0} f(x)$
$\therefore f$ is discontinuous at $x=0$

Step 4 :

Removable Discontinuity

f can be made continuous at $x=0$ by redefining it as

$$
\begin{aligned}
f(x) & =\frac{\left(e^{3 x}-1\right)^{2}}{x \cdot \log (1+3 x)} ; x \neq 0 \\
& =3 ;
\end{aligned}
$$

3. if $\sin y=x \cdot \sin (5+y)$; prove that $\frac{d y}{d x}=\frac{\sin ^{2}(5+y)}{\sin a}$

SOLUTION

$$
\begin{aligned}
\sin y & =x \cdot \sin (5+y) \\
x & =\frac{\sin y}{\sin (5+y)}
\end{aligned}
$$

Differentiating wrt y

$$
\frac{d x}{d y}=\frac{\sin (5+y) \frac{d}{d y} \sin y-\sin y \frac{d}{d y} \sin (5+y)}{\sin ^{2}(5+y)}
$$

$$
\frac{d x}{d y}=\frac{\sin (5+y) \cdot \cos y-\sin y \cdot \cos (5+y) \frac{d}{d y}(5+y)}{\sin ^{2}(5+y)}
$$

$$
\frac{d x}{d y}=\frac{\sin (5+y) \cdot \cos y-\cos (5+y) \cdot \sin y}{\sin ^{2}(5+y)}
$$

$$
\frac{d x}{d y}=\frac{\sin (5+y-y)}{\sin ^{2}(5+y)}
$$

$$
\frac{d x}{d y}=\frac{\sin 5}{\sin ^{2}(5+y)}
$$

$$
\begin{aligned}
& \text { Now } \quad \frac{d y}{d x}=\frac{1}{\frac{d x}{d y}} \\
& \therefore \quad \frac{d y}{d x}=\frac{\sin ^{2}(5+y)}{\sin 5}
\end{aligned}
$$

1. $\int_{4}^{7} \frac{(11-x)^{2}}{x^{2}+(11-x)^{2}} d x$

$$
\operatorname{Using} \int_{a}^{b} f(x) d x=\int_{b}^{b} f(a+b-x) d x
$$

$$
\begin{aligned}
& 1=\int_{4}^{7} \frac{(11-(4+7-x))^{2}}{(4+7-x)^{2}+[11-(4+7-x)]^{2}} d x \\
& 1=\int_{4}^{7} \frac{[11-(11-x)]^{2} d x}{(11-x)^{2}+(11-(11-x))^{2}} \\
& I=\int_{4}^{7} \frac{(11-11+x)^{2} d x}{(11-x)^{2}+(11-11+x)^{2}} \\
& I=\int_{4}^{7} \frac{x^{2}}{(11-x)^{2}+x^{2}} d x \\
& \text { (1) }+(2) \\
& 2 I=\int_{4}^{7} \frac{(11-x)^{2}+x^{2}}{(11-x)^{2}+x^{2}} d x \\
& 2 I=\int_{4}^{7} 1 d x \\
& 2 \mathrm{I}=(x)_{4}^{7} \\
& 2 I=7-4 \\
& 2 \mathrm{I}=3 \\
& \mathrm{I}=3 / 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { 02. } \int \frac{x^{2}}{x^{4}+5 x^{2}+6} d x \\
& \int \frac{x^{2}}{\left(x^{2}+2\right)\left(x^{2}+3\right)} d x
\end{aligned}
$$

SOLUTION

$$
\begin{aligned}
& \frac{x^{2}}{\left(x^{2}+2\right)\left(x^{2}+3\right)}=\frac{A}{x^{2}+2}+\frac{B}{x^{2}+3} \\
& x^{2}=\dagger \text { (say) }
\end{aligned}
$$

$$
\frac{t}{(t+2)(t+3)}=\frac{A}{t+2}+\frac{B}{t+3}
$$

$$
t \quad=A(t+3)+B(t+2)
$$

$$
\text { Put } \quad t=-3
$$

$$
\begin{array}{lll}
-3 & = & B(-3+2) \\
-3 & = & B(-1)
\end{array}
$$

$$
\therefore B=3
$$

Put $\quad \mathbf{t}=\mathbf{- 2}$

$$
\begin{aligned}
-2 & =A(-2+3) \\
-2 & =A(1)
\end{aligned}
$$

$$
\therefore \quad A=-2
$$

THEREFORE

$$
\frac{t}{(t+2)(t+3)}=\frac{-2}{t+2}+\frac{3}{t+3}
$$

hence

$$
\frac{x^{2}}{\left(x^{2}+2\right)\left(x^{2}+3\right)}=\frac{-2}{x^{2}+2}+\frac{3}{x^{2}+3}
$$

BACK IN THE SUM

$$
=\int \frac{-2}{x^{2}+2}+\frac{3}{x^{2}+3} d x
$$

$$
=\int \frac{-2}{x^{2}+\sqrt{ } 2^{2}}+\frac{3}{x^{2}+\sqrt{ } 3^{2}}
$$

$$
=-2 \cdot \frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x}{\sqrt{2}}\right)+3 \frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)+c
$$

$$
=-\sqrt{2} \tan ^{-1}\left(\frac{x}{\sqrt{2}}\right)+\sqrt{3} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)+c
$$

3. $A=\left(\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right)$

Verify: A. $(\operatorname{adj} A)=(\operatorname{adj} A) \cdot A=|A| . \mid$

COFACTOR'S
$A_{11}=(-1)^{1+1}\left|\begin{array}{cc}0 & -2 \\ 0 & 3\end{array}\right|=1(0-0)=0$
$A_{12}=(-1)^{1+2}\left|\begin{array}{cc}3 & -2 \\ 1 & 3\end{array}\right|=-1(9+2)=-11$
$A_{13}=(-1)^{1+3}\left|\begin{array}{ll}3 & 0 \\ 1 & 0\end{array}\right|=1(0-0)=0$

A21 $=(-1)^{2+1}\left|\begin{array}{cc}-1 & 2 \\ 0 & 3\end{array}\right|=-1(-3-0)=3$

A22 $=(-1)^{2+2}\left|\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right|=1(3-2)=1$

A23 $=(-1)^{2+3}\left|\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right|=-1(0+1)=-1$

A31 $=(-1)^{3+1}\left|\begin{array}{rr}-1 & 2 \\ 0 & -2\end{array}\right|=1(2-0)=2$

A32 $=(-1)^{3+2}\left|\begin{array}{rr}1 & 2 \\ 3 & -2\end{array}\right|=-1(-2-6)=8$

A33 $=(-1)^{3+3}\left|\begin{array}{cc}1 & -1 \\ 3 & 0\end{array}\right|=1(0+3)=3$

COFACTOR MATRIX OF A

$$
\left[\begin{array}{ccc}
0 & -11 & 0 \\
3 & 1 & -1 \\
2 & 8 & 3
\end{array}\right]
$$

ADJ A $=$ TRANSPOSE OF THE COFACTOR MATRIX

$$
=\left(\begin{array}{rrr}
0 & 3 & 2 \\
-11 & 1 & 8 \\
0 & -1 & 3
\end{array}\right)
$$

|A |

$$
\begin{aligned}
& =\quad 1(0+0)+1(9+2)+2(0-0) \\
& =\quad 11
\end{aligned}
$$

LHS 1
$=\quad$ A. $(\operatorname{adj} A)$
$=\left(\begin{array}{rrr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right)\left(\begin{array}{rrr}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right)$
$=\left(\begin{array}{lll}0+11+0 & 3-1-2 & 2-8+6 \\ 0-0-0 & 9+0+2 & 6+0-6 \\ 0-0+0 & 3+0-3 & 2+0+9\end{array}\right)$
$=\left(\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right)$

LHS 2
$=\quad(\operatorname{adj} A) \cdot A$
$=\left(\begin{array}{rrrr}0 & 3 & 2 & \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right)\left(\begin{array}{rrr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right)$
$=\left(\begin{array}{ccc}0+9+2 & 0+0+0 & 0-6+6 \\ -11+3+8 & 11+0+0 & -22-2+24 \\ 0-3+3 & 0-0+0 & 0+2+9\end{array}\right)$
$=\left(\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right)$

RHS
$=\quad|\mathrm{A}| . \mathrm{I}$
$=11\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right)$

HENCE \quad A. $(\operatorname{adj} A)=(\operatorname{adj} A) . A=|A| . I$

SECTION - II

Q4. (A)Attempt any six of the following

1. Find correlation coefficient between x and y for the following data

$$
\begin{aligned}
& \mathrm{n}=100, \bar{x}=62, \bar{y}=53, \sigma x=10, \sigma y=12, \Sigma(x-\bar{x})(y-\bar{y})=8000 \\
& \text { SOLUTION } \quad r=\frac{\operatorname{cov}(x, y)}{\sigma x \cdot \sigma y} \\
&=\frac{\frac{\sum(x-\bar{x})(y-\bar{y})}{n}}{\sigma x \cdot \sigma y} \\
&=\frac{\frac{8000}{100}}{10.12} \\
&=\frac{80}{10.12} \\
&=\frac{2}{3}
\end{aligned}
$$

2. a building is insured for 80% of its value. The annual premium at 70 paise percent amounts to Rs 2,800 . Fire damaged the building to the extent of 60% of its value. How much amount for damage can be claimed under the policy

SOLUTION

$$
\begin{aligned}
& \text { Property value }=\cdot x \\
& \text { Insured value }=\frac{80 x}{100}=\frac{4 x}{5} \\
& \text { Rate of premium }=70 \text { paise percent } \\
&=0.70 \% \\
&=\cdot 2800 \\
&=\frac{0.70}{100} \times \frac{4 x}{5} \\
& \text { Premium }=\frac{7}{1000} \times \frac{4 x}{5} \\
& 2800=\frac{28 x}{5000} \\
& 2800=100 \times 5000 \\
& 2800=5,00,000 \\
& x \\
& x
\end{aligned}
$$

$$
\begin{aligned}
\text { Loss } & =\frac{60}{100} \times 5,00,000 \\
& =\cdot 3,00,000 \\
& =80 \% \text { of loss } \\
& =\frac{80}{100} \times 3,00,000 \\
& =\cdot 2,40,000
\end{aligned}
$$

3. The coefficient of rank correlation for a certain group of data is 0.5 . If $\sum d^{2}=42$ assuming no ranks are repeated; find the no. of pairs of observation

SOLUTION

$$
\begin{aligned}
& R=0.5 ; \Sigma d^{2}=42 \\
& R=1-\frac{6 \Sigma d^{2}}{n\left(n^{2}-1\right)} \\
& 0.5=1-\frac{6(42)}{n\left(n^{2}-1\right)} \\
& \frac{6(42)}{n\left(n^{2}-1\right)}=1-0.5 \\
& \frac{6(42)}{n\left(n^{2}-1\right)}=0.5 \\
& \frac{6(42)}{n\left(n^{2}-1\right)}=\frac{1}{2} \\
& n\left(n^{2}-1\right) \\
& n\left(n^{2}-1\right) \\
& =6 \times 42 \times 2 \\
& (n-1) . n .(n+1)=7 \times 8 \times 9 \\
& O n \times 0 m p a r i n g, n=8
\end{aligned}
$$

4. Maya and Jaya started a business by investing equal amount. After 8 months Jaya withdrew her amount and Priya entered the business with same amount of capital. At the end of the year there was a profit of • 13,200. Find their share of profit SOLUTION

STEP 1:

Profits will be shared in the
‘RATIO OF PERIOD OF INVESTMENT'

STEP 2 :

PROFIT = . 13,200

1100
Maya's share of profit $=\frac{12}{\frac{24}{24}} \times 13,200=\cdot 6,600$ 2

1100
Jaya's share of profit $=\frac{8}{\frac{84}{2}} \times 13,200=\cdot 4,400$
1100
Priya'sshare of profit

$$
=\frac{4}{-24} \times 13,200=\cdot 2,200
$$

5. Calculate CDR for district A and B and compare

COMMENT: $\operatorname{CDR}(B)<\operatorname{CDR}(A)$. HENCE DISTRICT B IS HEALTHIER THAN DISTRICT A
06. the probability distribution function of continuous random variable X is given by

$$
\begin{array}{rlrl}
f(x) & =\frac{x}{4}, & & \\
& =0<x<2 & \\
& =0 \text { otherwise } & \text { Find } P(x \leq 1)
\end{array}
$$

SOLUTION
the pdf of continuous random variable X is given by

$$
\begin{aligned}
& f(x)=\frac{x}{4} \quad ; \quad 0<x<2 \\
& =0 \text {; otherwise } \\
& P(x \leq 1)=1 \\
& \int_{0} \frac{x}{4} d x \\
& =\left(\frac{x^{2}}{8}\right)^{1} \\
& =\quad 1-0 \\
& \left(\frac{8}{-}\right) \quad\left(\frac{8}{3}\right) \\
& = \\
& \frac{1}{8}
\end{aligned}
$$

7. The ratio of incomes of Salim \& Javed was 20:11. Three years later income of Salim has increased by 20% and income of Javed was increased by Rs 500 . Now the ratio of their incomes become 3:2. Find original incomes of Salim and Javed

SOLUTION

$$
\begin{aligned}
& \text { Let income of Salem }=20 x \\
& \text { Income of saved }=11 x \\
& \text { As per the given condition } \\
& 20 x+\frac{20}{100}(20 x)=\frac{3}{2} \\
& 11 x+500 \\
& \frac{20 x+4 x}{11 x+500}=\frac{3}{2} \\
& \frac{24 x}{11 x+500} \\
& =\frac{3}{2} \\
& 48 x=33 x+1500 \\
& 15 \mathrm{x}=1500 \\
& x=100
\end{aligned}
$$

8. for an immediate annuity paid for 3 years with interest compounded at 10% p.a. its present value is Rs 10,000. What is the accumulated value after 3 years ($\left.1.1^{3}=1.331\right)$

SOLUTION

$$
\begin{aligned}
A & =P(1+i)^{n} \\
& =10000(1+0.1)^{3} \\
& =10000(1.1)^{3} \\
& =10000(1.331) \\
& =\cdot 13,310
\end{aligned}
$$

Q5. (A)Attempt any Two of the following

1. a new treatment for baldness is known to be effective in 70% of the cases treated. Four bald members from different families are treated. Find the probability that
(i) at least one member is successfully treated (ii) exactly 2 members are successfully treated SOLUTION

4 bald members from different families are treated , $\mathrm{n}=4$
For a trial Success - a defective pen

$$
\begin{aligned}
& \mathrm{p}-\text { probability of success }=70 / 100=7 / 10 \\
& q-\text { probability of failure }=1-7 / 10=3 / 10
\end{aligned}
$$

r.v. X - no of successes $=0,1,2,3,4 \quad \mathbf{X} \sim \mathbf{B}(\mathbf{4}, \mathbf{7 / 1 0})$
a) P (at least one member is successfully treated)

$$
\begin{aligned}
& =P(X \geq 1) \\
& =P(1)+P(2)+\ldots \ldots+P(4) \\
& =1-P(0) \\
& =1-{ }^{4} C 0 \cdot p^{0} \cdot q^{4} \\
& =1-{ }^{4} C 0\left(\frac{7}{10}\right)^{0}\left(\frac{3}{10}\right)^{4} \\
& =1-\frac{1.1 .81}{10000} \\
& =1-0.0081 \\
& =0.9919
\end{aligned}
$$

b) P (exactly 2 members are successfully treated)

$$
\begin{aligned}
& =P(X=2) \\
& ={ }^{4} C_{2} \cdot p^{2} \cdot q^{2} \\
& ={ }^{4} C_{2}\left(\frac{7}{10}\right)^{2}\left(\frac{3}{10}\right)^{2} \\
& =\frac{6.49 .9}{10^{4}} \\
& =\frac{2646}{10000}=0.2646
\end{aligned}
$$

2. Compute rank correlation coefficient for the following data

$R x:$	1	2	3	4	5	6
$R y:$	6	3	2	1	4	5

SOLUTION

x	y	$d=\|x-y\|$	d^{2}
1	6	5	25
2	3	1	1
3	2	1	1
4	1	3	9
5	4	1	1
6	5	1	1

$$
\begin{aligned}
R & =1-\frac{6 \Sigma d^{2}}{n\left(n^{2}-1\right)} \\
& =1-\frac{6(38)}{6(36-1)} \\
& =1-\frac{38}{35} \\
& =-\frac{3}{35} \\
& =-0.086
\end{aligned}
$$

3. the income of the agent remains unchanged though the rate of commission is increased from 5% to 6.25%. Find the percentage reduction in the value of the business

SOLUTION

Let initial sales	$=\cdot 100$
Rate of commission	$=5 \%$
\therefore Commission	$=\cdot 5$
Let the new sales	$=\cdot x$
Rate of commission	$=6.25 \%$
\therefore Commission	$=\frac{6.25 x}{100}$

Since the income of the broker remains unchanged

$$
\begin{aligned}
& \frac{6.25}{100} \times=5 \\
& x=\frac{5 \times 100 \times 100}{625} \\
& x=80 \\
& \therefore \text { new sales }=.80
\end{aligned}
$$

Hence percentage reduction in the value of the business $=20 \%$

1. A warehouse valued at • 10,000 contained goods worth • 60,000. The warehouse was insured against fire for • 4,000 and the goods to the extent of 90% of their value. A fire broke out and goods worth • 20,000 were completely destroyed, while the remainder was damaged and reduced to 80% of its value. The damage to the warehouse was to the extent of • 2,000 . Find the total amount that can be claimed

SOLUTION :

WAREHOUSE

```
Property value = . 10,000
Insured value = . 4,000
Loss
= . 2,000
Claim
    = insured val. }x\mathrm{ loss
    Property val.
    = 4,000 }\times2,00
        10,000
    = . 800
```


StOCK IN WAREHOUSE

Value of stock $=\cdot 60,000$
Insured value $=90 \%$ of the stock
Loss
Note : Since the remainder was reduced to 80% of its value the loss on it is 20%
$=20,000+\frac{20}{100}(60,000-20,000)$
$=20,000+\frac{20}{100}(40,000)$
$=20,000+8,000$
$=$. 28,000

Since 90% of the stock was insured

Claim
$=90 \%$ of loss
$=\frac{90}{100} \times 28,000$
$=.25,200$
Hence
Total claim $=800+25,200$
$=$. 26,000

| 02. X | $:$ | 6 | 2 | 10 | 4 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Y | $:$ | 9 | 11 | $?$ | 8 | 7 |

Arithmetic means of X and Y series are 6 and 8 respectively. Calculate correlation coefficient SOLUTION : $\bar{y}=\frac{\Sigma y}{n}$

$$
\begin{array}{ll}
8=\frac{9+11+b+8+7}{5} & \\
40=35+b & b=5
\end{array}
$$

x	y	$x-\bar{x}$	$y-\bar{y}$	$(x-\bar{x})^{2}$	$(y-\bar{y})^{2}$	$(x-\bar{x})(y-\bar{y})$
6	9	0	1	0	1	0
2	11	-4	3	16	9	-12
10	5	4	-3	16	9	-12
4	8	-2	0	4	0	0
8	7	2	-1	4	20	-26
30	40	0	0	50	$\Sigma(x-\bar{x})^{2}$	$\Sigma(y-\bar{y})^{2}$
Σx	Σy	$\Sigma(x-\bar{x})$	$\Sigma(y-\bar{x})(y-\bar{y})$			
$\bar{x}=6 \bar{y}=8$						

$$
r=\frac{\Sigma(x-\bar{x}) \cdot(y-\bar{y})}{\sqrt{\Sigma(x-\bar{x})^{2}} \sqrt{\Sigma(y-\bar{y})^{2}}}
$$

$$
r=\frac{-26}{\sqrt{40 \times \sqrt{ } 20}}
$$

$$
r=\frac{-26}{\sqrt{40 \times 20}}
$$

$$
r^{\prime}=\frac{26}{\sqrt{40 \times 20}}
$$

taking log on both sides

$$
\begin{aligned}
\log r^{\prime} & =\log 26-\frac{1}{2}(\log 40+\log 20) \\
\log r^{\prime} & =1.4150-\frac{1}{2}[1.6021+1.3010] \\
\log r^{\prime} & =1.4150-\frac{1}{2}(2.9031) \\
\log r^{\prime} & =1.4150-1.4516 \\
\log r^{\prime} & =-1.9634 \\
r^{\prime} & =A L \overline{(1} .9634)=0.9191 \\
r & =-0.9191
\end{aligned}
$$

3. a bill of • 7,500 was discounted for • 7290 at a bank on $28^{\text {th }}$ October 2006 . If the rate of interest was 14% p.a., what is the legal due date

SOLUTION

STEP 1:

Let Unexpired period $=$ d days

STEP 2 :
B.D. = F.V. - C.V.
$=7,500-7,290$
= . 210

STEP 3
B.D. = Interest on F.V.for 'd' days @ 14\% p.a.

15
$210=7500-\frac{d}{365} \times \frac{14}{100}$
73
$d=\frac{210 \times 73}{15 \times 14}$
d $=73$ days

STEP 4:

Legal Due date
$=28^{\text {th }}$ Oct +73 days
$=\begin{aligned} & \text { OCT } \\ & =3+30+ \\ & +31+ \\ & +3\end{aligned}$
$=9^{\text {th }}$ January 2007

1. The number of complaints which a bank manager receives per day is a Poisson random variable with parameter $m=4$. Find the probability that the manager will receive at most two complaints on any given day $\quad\left(e^{-4}=0.0183\right)$

SOLUTION

$m=$ average number of complaints a bank manager receives per day $=4$
r.v $X \sim P(4)$

P(at most two complaints on any given day)
$=P(x \leq 2)$
$=P(0)+P(1)+P(2)$
$=\frac{e^{-4} \cdot 4^{0}}{0!}+\frac{e^{-4} \cdot 4^{1}}{1!}+\frac{e^{-4} \cdot 4^{2}}{2!}$ Using $P(x)=\frac{e^{-m} \cdot m^{x}}{x!}$
$=e^{-4} \cdot\left(\frac{1}{1}+\frac{4}{1}+\frac{16}{2}\right)$
$=0.0183(1+4+8)$
$=0.0183(13)$
$=0.2379$
02. Suppose X is a random variable with pdf

$$
f(x)=\frac{c}{x} ; 1<x<3 ; c>0
$$

Find c \& $E(X)$
i) 3

$$
\int_{1} \frac{c}{x} d x=1
$$

$$
3
$$

$$
c \int_{1} \frac{1}{x} d x=1
$$

$$
c(\log x)_{1}^{3}=1
$$

$$
c(\log 3-\log 1)=1
$$

$$
c \log 3=1
$$

$$
c \quad=\frac{1}{\log 3}
$$

Hence X is a rev. with pdf

$$
f(x)=\frac{1}{x \cdot \log 3} ; 1<x<3
$$

ii) $E(x)=\int_{1}^{3} x \cdot f(x) d x$

$$
=\int_{1}^{3} x \cdot \frac{1}{x \cdot \log 3} d x
$$

$$
=\int_{1}^{3} \frac{1}{\log 3} d x
$$

$$
=\left(\frac{x}{\log 3}\right)^{3}
$$

$$
=\left(\frac{3}{\log 3}\right)-\left(\frac{1}{\log 3}\right)=\frac{2}{\log 3}
$$

3. In a factory there are six jobs to be performed, each of which should go through machines A and B in the order $A-B$. Determine the sequence for performing the jobs that would minimize the total elapsed time T. Find T and the idle time on the two machines

Job	J1	J2	J3	J4	J5	J6
$M A$	1	3	8	5	6	3
$M B$	5	6	3	2	2	10

Step 1 : Finding the optimal sequence

Min time $=1$ on job J1 on machine M1. Place the job at the start of the sequence

J_{1}					

Next min time= 2 on jobs $J_{4} \& J_{5}$ on machine M_{B}. Place the jobs at the end of the sequence randomly

Placed Randomly

Next min time $=3$ onjobs $J_{2} \& J_{6}$ on machine M_{A} and on job J3 on machine M_{B} respectively. Place $\mathrm{J}_{2} \& \mathrm{~J}_{6}$ at the start next to J 1 randomly and J3 at the end next to J4

OPTIMAL SEQUENCE

J_{1}	$\mathrm{~J}_{2}$	J 6	$\mathrm{~J}_{3}$	J 4	J 5

Step 2 : Work table

According to the optimal sequence

Job	$\mathbf{J}_{\mathbf{1}}$	$\mathbf{J}_{\mathbf{2}}$	$\mathbf{J}_{\mathbf{6}}$	$\mathbf{J}_{\mathbf{3}}$	$\mathbf{J}_{\mathbf{4}}$	$\mathbf{J}_{\mathbf{5}}$	total process time
M_{A}	1	3	3	8	5	6	$=26 \mathrm{hrs}$
M_{B}	5	6	10	3	2	2	$=28 \mathrm{hrs}$

	MACHINES			
	MA		Mb	
JOBS	IN	OUT	IN	OUT
$J 1$	0	1	1	6
J_{2}	1	4	6	12
J6	4	7	12	22
J3	7	15	22	25
J_{4}	15	20	25	27
J5	20	26	27	29

Idle time on Mb

Step 3 :

Total elapsed time $\mathrm{T}=29 \mathrm{hrs}$

Idle time on $M_{A}=T-($ sum of processing time of all 6 jobs on $M 1)$
= 29-26
$=3 \mathrm{hrs}$

Idle time on $M_{B}=T-\left(\right.$ sum of processing time of all 6 jobs on M_{2})
= 29-28
$=1 \mathrm{hr}$

Step 4 : All possible optimal sequences :

$$
\begin{gathered}
\mathrm{J}_{1}-\mathrm{J}_{2}-\mathrm{J}_{6}-\mathrm{J}_{3}-\mathrm{J}_{4}-\mathrm{J}_{5} \\
O R \\
\mathrm{~J}_{1}-\mathrm{J}_{6}-\mathrm{J}_{2}-\mathrm{J}_{3}-\mathrm{J}_{4}-\mathrm{J}_{5} \\
O R \\
\mathrm{~J}_{1}-\mathrm{J}_{2}-\mathrm{J}_{6}-\mathrm{J}_{3}-\mathrm{J}_{5}-\mathrm{J}_{4} \\
O R
\end{gathered}
$$

$$
\mathrm{J}_{1}-\mathrm{J}_{6}-\mathrm{J}_{2}-\mathrm{J}_{3}-\mathrm{J}_{5}-\mathrm{J}_{4}
$$

1. a pharmaceutical company has four branches, one at each city A, B , C and D. A branch manager is to be appointed one at each city, out of four candidates P, Q, R and S. The monthly business depends upon the city and effectiveness of the branch manager in that city

		A	B	C	D	
	P	11	11	9	9	
branch	Q	13	16	11	10	MONTHLY business (in lacs)
manager	R	12	17	13	8	
	S	16	14	16	12	

Which manager should be appointed at which city so as to get maximum total monthly business.

6	6	8	8	Subtracting all the elements in the matrix from
4	1	6	7	its maximum
5	0	4	9	The matrix can now be solved for 'MINIMUM'
1	3	1	5	
0	0	2	2	Reducing the matrix using 'ROW MINIMUM'
3	0	5	6	
5	0	4	9	
0	2	0	4	
0	0	2	0	Reducing the matrix using 'COLUMN MINIMUM'
3	0	5	4	
5	0	4	7	
0	2	0	2	
0	*	2	*	- Allocation using 'single zero row-column method '
3	0	5	4	- Allocation incomplete (3rd row unassigned)
5	*	4	7	
*	2	0	2	

- Drawing min. no. of lines to cover all '0's

0	3	2	0	Revise the matrix
0	0	2	1	Reducing all the uncovered elements by its
2	0	1	4	minimum and adding the same at the
0	4	0	2	intersection
$*$	3	2	0	- Reallocation using 'single zero row-column method'
0	*	2	1	- Since all rows contain an 'assigned zero', the
2	0	1	4	assignment problem is complete
*	4	0	2	
Optimal Assignment			P-D; Q - A; $\mathrm{R}-\mathrm{B} ; \quad \mathrm{S}-\mathrm{C}$	
			Maximum business $=9+13+17+16=55(\operatorname{lacs})$	

2. Information on vehicles (in thousands) passing through seven different highways during a day (X) and number of accidents reported (Y) is given as
$\Sigma x=105 ; \quad \sum y=409 ; \quad \sum x^{2}=1681 ; \sum y^{2}=39350 ; \quad \sum x y=8075$
Obtain linear regression of Y on X
SOLUTION

$$
\begin{aligned}
& \bar{x}=\frac{\Sigma x}{n}=\frac{105}{7}=15 \\
& \begin{aligned}
\bar{y}=\frac{\Sigma y}{n} & =\frac{409}{7}=58.43 \\
\text { byx } & =\frac{n \Sigma x y-\Sigma x \cdot \Sigma y}{n \Sigma x^{2}-(\Sigma x)^{2}} \\
& =\frac{7(8075)-(105)(409)}{7(1681)-(105)^{2}} \\
& =\frac{56525-42945}{11767-11025} \\
& =\frac{13580}{742} \longrightarrow \\
& =18.30
\end{aligned}
\end{aligned}
$$

LOG CALC
4.1329
-2.8704
AL 1.2625
18.30

Equation

$$
\begin{aligned}
& y-\bar{y}=\operatorname{byx}(x-\bar{x}) \\
& y-58.43=18.30(x-15) \\
& y-58.43=18.30 x-274.5 \\
& y=18.30 x-274.50+58.43 \\
& y=18.30 x-216.07
\end{aligned}
$$

3. Minimize $z=3 x_{1}+2 \times 2$
subject to : $5 \times 1+x 2 \geq 10 ; \quad 2 x 1+2 \times 2 \geq 12 ; \quad x 1+4 \times 2 \geq 12 ; \quad x 1, x 2 \geq 0$
$\frac{\text { STEP } 1:}{5 \times 1+\times 2} \geq 10$
$2 \times 1+2 \times 2 \geq 12$
$2 x_{1}+2 x_{2}=12$
cuts $\times 1$ - axis at $(6,0)$
cuts x_{2} - axis at $(0,6)$

$x_{1}+4 x_{2} \geq 12$	$x_{1}+4 x_{2}=12$
	cuts x_{1} - axis at $(12,0)$
	cuts x_{2} - axis at $(0,3)$

$x 1, x 2 \geq 0$

STEP 2 :
x2-axis

STEP 3 :

CORNERS	$z=3 \times 1+2 \times 2$
A $(0,10)$	$3(0)+2(10)=0+20=20$
$B(1,5)$	$3(1)+2(5)=3+10=13$
$C(4,2)$	$3(4)+2(2)=12+4=16$
$D(12,0)$	$3(12)+2(0)=36+0=36$
OPTIMAL SOLUTION : Zmin $=13$ at $(1,5)$	

$$
x-x-x-x-x-x-x-x-x-x
$$

