		SYJC - MA		CLASSES STATISTICS	
		ranch - Andheri, Borivali & otal Marks : 80		Date: 25 /01/2017 Total time: 3 hours	
			SECTION - I		
Q1.	(A)A	ttempt any six of the following			(12)
	01.	Find X and Y if X + Y = $\begin{pmatrix} 7 & 0 \\ 2 & 5 \end{pmatrix}$; X – Y =	$ \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} $	
		SOLUTION			
		$ X + Y = \begin{pmatrix} 7 & 0 \\ 2 & 5 \end{pmatrix} X + X - Y = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} X - $	$Y = \begin{cases} 7 \\ 2 \end{cases}$	0 5	
		$\begin{array}{ccc} X - Y = & \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} & X - \\ \end{array}$	$Y = \begin{cases} 3 \\ 0 \end{cases}$	0 3	
		$2X = \begin{pmatrix} 10 & 0 \\ 2 & 8 \end{pmatrix}$	$2Y = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$	0 2	
		$X = \frac{1}{2} \begin{bmatrix} 10 & 0 \\ 2 & 8 \end{bmatrix}$	$Y = \frac{1}{2} \begin{bmatrix} 4\\ 2 \end{bmatrix}$	0 2	
		$X = \begin{pmatrix} 5 & 0 \\ 1 & 4 \end{bmatrix}$	$Y = \begin{cases} 2 \\ 1 \end{cases}$	0 1	
	02.	find $\frac{dy}{dx}$ if $y = \sin^{-1}\sqrt{1 - x^2}$			
		SOLUTION Put $x = \cos \theta$			
		$y = \sin^{-1} \sqrt{1 - \cos^2}$	θ		
		$y = \sin^{-1} \sqrt{\sin^2 \theta}$			
		$y = sin^{-1}$ (sin θ)			
		$y = \theta$			
		$y = \cos^{-1} x$			
		$\frac{dy}{dx} = \frac{-1}{\sqrt{1 - x^2}}$			

03. Find the value of k if the function $f(x) = \tan 7x \qquad ; \quad x \neq 0$ 2x = k ; x = 0 is continuous at x = 0SOLUTION Step 1 Lim f(x) $x \rightarrow 0$ $= \lim_{x \to 0} \frac{\tan 7x}{2x}$ $= \lim_{x \to 0} \frac{7}{2} \frac{\tan 7x}{7x}$ <u>7</u>(1) 2 = <u>7</u> 2 = Step 2 : f(0) = k given Step 3 : Since f is continuous at x = 0f(0) = Lim f(x)x→0 k = 7/2 04. Write negations of the following statements 1. $\forall y \in N, y^2 + 3 \le 7$ **Negation** : $\exists y \in N$, such that $y^2 + 3 > 7$ if the lines are parallel then their slopes are equal 2. Using : $\sim (P \rightarrow Q) \equiv P \land \sim Q$ Negation : lines are parallel and their slopes are not equal 05. find elasticity of demand if the marginal revenue is Rs 50 and the price is Rs 75 SOLUTION

Rm	$= R_A \left(\begin{array}{c} 1 & - \\ \hline \eta \end{array} \right)$			
50	$= 75 \left(1 - \frac{1}{\eta}\right)$			
<u>50</u> 75	= 1 - <u>1</u> η			
<u>2</u> 3	= 1 - <u>1</u> η			
<u>η</u>	$= 1 - \frac{2}{3}$			
<u>1</u> η	= <u>1</u> <u>3</u>	η	=	3

- 06. State which of the following sentences are statements . In case of statement , write down the truth value
 - a) Every quadratic equation has only real roots

ans : the given sentence is a logical statement . Truth value : F

b) $\sqrt{-4}$ is a rational number

ans : the given sentence is a logical statement . Truth value : F

07. Evaluate : $\int \frac{\sec^2 x}{\tan^2 x + 4} dx$ SOLUTION $PUT \quad \tan x = t$ $\sec^2 x \cdot dx = dt$ THE SUM IS $= \int \frac{1}{t^2 + 4} dt$ $= \int \frac{1}{t^2 + 2^2} dt$ $= \frac{1}{1} \tan^{-1} \frac{t}{1} + c$ $= \frac{1}{2} \tan^{-1} \frac{t}{2} + c$ Resubs. $= \frac{1}{2} \tan^{-1} \left(\frac{\tan x}{2}\right) + c$

98. If
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$$
; $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ then find [AB]
SOLUTION
AB
 $= \begin{pmatrix} 1 + 3 & 2 + 4 \\ 2 + 6 & 4 + 8 \end{pmatrix}$
 $= \begin{pmatrix} 4 & 6 \\ 8 & 12 \end{pmatrix}$
[AB] = 4(12) - 8(6) = 48 - 48 = 0
92. (A)Attempt any TWO of the following
91. $f(x) = \frac{3 - \sqrt{2x + 7}}{x - 1}$; $x \neq 1$
 $= -1/3$; $x = 1$ Discuss continuity at $x = 1$
SOLUTION
92. If $f(x) = \frac{3 - \sqrt{2x + 7}}{x - 1}$; $x \neq 1$
 $= -1/3$; $x = 1$ Discuss continuity at $x = 1$
SOLUTION
93. $f(x) = \frac{3 - \sqrt{2x + 7}}{x - 1}$; $x \neq 1$
 $= \lim_{x \to 1} \frac{3 - \sqrt{2x + 7}}{x - 1}$; $3 + \sqrt{2x + 7}$
 $= \lim_{x \to 1} \frac{3 - \sqrt{2x + 7}}{x - 1}$; $\frac{3 + \sqrt{2x + 7}}{3 + \sqrt{2x + 7}}$
 $= \lim_{x \to 1} \frac{9 - (2x + 7)}{x - 1}$; $\frac{1}{3 + \sqrt{2x + 7}}$
 $= \lim_{x \to 1} \frac{9 - 2x - 7}{x - 1}$; $\frac{1}{3 + \sqrt{2x + 7}}$
 $= \lim_{x \to 1} \frac{2 - 2x}{x - 1}$; $\frac{1}{3 + \sqrt{2x + 7}}$
 $= \lim_{x \to 1} \frac{2(1 - x)}{x - 1}$; $\frac{1}{3 + \sqrt{2x + 7}}$
 $= \lim_{x \to 1} \frac{-2(x - 1)}{x - 1}$; $\frac{1}{3 + \sqrt{2x + 7}}$
 $= \lim_{x \to 1} \frac{-2(x - 1)}{x - 1}$; $\frac{1}{3 + \sqrt{2x + 7}}$; $x - 1 \neq 0$
 $= \frac{-2}{3 + \sqrt{2} + 7}$

(06)

$$= \frac{2}{3+3}$$

$$= \frac{1}{3}$$
SIFP 2:

$$|(1) = -13$$
SIFP 3:

$$(1) = \lim_{x \to 1} |(x| - |f| \text{ is continuous at } x = 1$$
20. Write the converse , inverse and the contrapositive of the statement
If two triangles are not congruent then their areas are not equal.
SOLUTION:
LET $P \rightarrow Q = -$ if the triangles are not congruent then their areas are not equal.
CONVERSE $: Q \rightarrow P$
If the areas of triangles are not equal then they are congruent
CONTRAPOSITIVE: $x = Q \rightarrow xP$
If the areas of the triangles are congruent then their areas are not equal.
CONTRAPOSITIVE: $x = Q \rightarrow xP$
If the areas of the triangles are congruent then their areas are equal.
ON VERSE $: x = P \rightarrow xQ$
If the two triangles are congruent then their areas are equal.
OS. Find $\frac{dy}{dx}$, $y = \tan^{-1}\left[\frac{6x}{1-5x^2}\right]$
SOLUTION
 $y = \tan^{-1}\left[\frac{5x + x}{1-5xx}\right]$
 $y = \tan^{-1}\left[\frac{5x + x}{1-5xx^2}\right]$
 $y = \tan^{-1}5x + \tan^{-1}x$
 $\frac{dy}{dx} = \frac{1}{1+25x^2} \cdot \frac{d}{dx} \left(\frac{1}{1+x^2}\right)$

(B) Attempt any TWO of the following

(08)

$$\frac{x^2}{36} + \frac{y^2}{25} = 1$$

about Y – axis

SOLUTION

STEP 2 :

$$\frac{x^2}{36} + \frac{y^2}{25} = 1$$

$$\frac{x^2}{36} = 1 - \frac{y^2}{25}$$

$$\frac{x^2}{36} = \frac{25 - y^2}{25}$$

$$x^2 = \frac{36}{25}(25 - y^2)$$

STEP 3:

$$V = \pi \int_{-5}^{5} x^{2} dy$$
About y - axis

$$= \pi \int_{-5}^{5} \frac{36}{25} (25 - y^{2}) dy$$

$$= \frac{36\pi}{25} \int_{-5}^{5} (25 - y^{2}) dy$$

$$s = \frac{36\pi}{25} \left[\left(\frac{25}{2} - \frac{y^2}{3} \right) \right]_{-5}^{-5}$$

$$= \frac{36\pi}{25} \left\{ \left[\frac{125}{25} - \frac{125}{3} \right]_{-5}^{-} \left(-\frac{125}{3} + \frac{125}{3} \right) \right\}$$

$$= \frac{36\pi}{25} \left\{ \left[\frac{250}{3} \right]_{-5}^{-} \left(\frac{250}{3} \right) \right\}$$

$$= \frac{36\pi}{25} \left\{ \frac{250}{3} \right]_{-5}^{-} \left(\frac{250}{3} \right) \right\}$$

$$= \frac{36\pi}{25} \left\{ \frac{500}{3} \right]_{-5}^{-} \left(\frac{250}{3} \right) \right\}$$

$$= 240 \pi \text{ cubic units}$$
02. Evaluate:
$$\int \log (1 + x^2) \, dx$$

$$= \int \log (1 + x^2) \, dx$$

$$= \log (1 + x^2) \int 1 \, dx - \int \left[\frac{d}{dx} \log (1 + x^2) \int 1 \, dx \right] \, dx$$

$$= \log (1 + x^2) \cdot x = \int \frac{2x}{1 + x^2} \cdot x \, dx$$

$$= x \cdot \log (1 + x^2) = 2 \int \frac{1}{1 + x^2} \, dx$$

$$= x \cdot \log (1 + x^2) = 2 \int \frac{1}{1 + x^2} \, dx$$

$$= x \cdot \log (1 + x^2) = 2 \int \frac{1}{1 + x^2} \, dx$$

$$= x \cdot \log (1 + x^2) = 2 \int 1 - \frac{1}{1 + x^2} \, dx$$

$$= x \cdot \log (1 + x^2) = 2 \int 1 - \frac{1}{1 + x^2} \, dx$$

$$= x \cdot \log (1 + x^2) = 2 \int (1 - \frac{1}{1 + x^2} \, dx)$$

$$= x \cdot \log (1 + x^2) = 2 \int (1 - \frac{1}{1 + x^2} \, dx)$$

$$= x \cdot \log (1 + x^2) = 2 \int (1 - \frac{1}{1 + x^2} \, dx)$$

$$= x \cdot \log (1 + x^2) = 2 \int (1 - \frac{1}{1 + x^2} \, dx)$$

$$= x \cdot \log (1 + x^2) = 2 \int (1 - \frac{1}{1 + x^2} \, dx)$$

$$= x \cdot \log (1 + x^2) = 2 \int (1 - \frac{1}{1 + x^2} \, dx)$$

$$= x \cdot \log (1 + x^2) = 2 \int (1 - \frac{1}{1 + x^2} \, dx)$$

$$= x \cdot \log (1 + x^2) = 2 (x - \tan^{-1}x) + c$$

03. If Mr. Rao orders x cupboards , with demand function as

$$p = 2x + \frac{32}{x^2} - \frac{5}{x}$$

How many cupboards should he order for the most economical deal **solution**

STEP 1: COST

$$C = p.x$$

$$= \left[2x + \frac{32}{x^2} - \frac{5}{x}\right] \cdot x$$

$$= 2x^2 + \frac{32}{x} - 5$$

STEP 2 :

$$\frac{dC}{dx} = 4x - 32 = 4x - 32x^{-2}$$
$$\frac{d^{2}C}{dx^{2}} = 4 + 64x^{-3}$$
$$= 4 + \frac{64}{x^{3}}$$

STEP 3 :

$$\frac{dC}{dx} = 0$$

$$4x - \frac{32}{x^2} = 0$$

$$4x = \frac{32}{x^2}$$

$$4x^3 = 32$$

$$x^3 = 8 \quad \therefore x = 2$$

STEP 4 :

$$\frac{d^2C}{dx^2} \bigg| \begin{array}{ccc} = & 4 + \frac{64}{2^3} & > & 0 \\ x & = & 2 & & 2^3 \end{array}$$

Cost is minimum at x = 2

Mr. Rao must order 2 cupboards

Q3. (A)Attempt any TWO of the following

Using the truth table , examine whether the statement pattern is a tautology , a contradiction or a contingency : (p → q) ↔ (~ p ∨ q)
 SOLUTION

р	q	~ p	$p \rightarrow q$	~p ∨ q	$(p \rightarrow q) \leftrightarrow (\sim p \lor q)$
Т	Т	F	Т	Т	Т
Т	F	F	F	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т

Since all values in the last column are 'T ' , the given statement is a TAUTOLOGY

02. $f(x) = (e^{3x} - 1)^2$; $x \neq 0$

$$\overline{x.log(1 + 3x)}$$

= 10 ; x = 0 Discuss the continuity at x = 0

Solution :

Step 1

 $\lim_{x \to 0} f(x)$

$$= \text{Lim} \qquad (e^{3x} - 1)^2$$
$$x \rightarrow 0 \qquad x.\log(1 + 3x)$$

Dividing Numerator & Denominator by x^2 $x \rightarrow 0$, $x \neq 0$, $x^2 \neq 0$

= Lim

$$x \rightarrow 0$$
 $\frac{(e^{3x} - 1)^2}{x^2}$
 $\frac{x \cdot \log(1 + 3x)}{x^2}$

= Lim

$$x \rightarrow 0$$
 $\frac{\left(\frac{e^{3x}-1}{x}\right)^2}{\frac{\log(1+3x)}{x}}$

= Lim

$$x \to 0$$

$$\frac{\left(3 \frac{e^{3x} - 1}{3x}\right)^2}{\log(1 + 3x)}$$

$$= \lim_{x \to 0} \frac{\left(3 + \frac{e^{3x} - 1}{3x}\right)^2}{\log\left(1 + \frac{1}{3x}\right)^3}$$
$$= \frac{(3 \log e)^2}{\log e^3}$$
$$= \frac{9}{3 \log e} = 3$$

Step 2 :

f(0) = 10 given

Step 3 :

 $f(0) \neq \lim_{x \to 0} f(x)$

 $\therefore f$ is discontinuous at x = 0

Step 4 :

Removable Discontinuity

f can be made continuous at x = 0 by redefining it as

$$f(x) = \frac{(e^{3x} - 1)^2}{x \cdot \log(1 + 3x)} ; x \neq 0$$
$$= 3 ; x = 0$$

SOLUTION	
sin y = x.sin(5 + y)	
$x = \frac{\sin y}{\sin (5 + y)}$	
Differentiating wrt y	
$\frac{dx}{dy} = \frac{\sin(5+y)}{\frac{d}{y}} \frac{d}{\sin y} - \frac{\sin y}{\frac{d}{y}} \frac{d}{\sin(5+y)}$ $\frac{\sin^2(5+y)}{\sin^2(5+y)}$	
sin ² (5 + y)	
$\frac{dx}{dy} = \frac{\sin(5+y) \cdot \cos y}{dy} - \frac{\sin y \cdot \cos(5+y)}{dy} \frac{d}{dy} (5+y)$	()
$sin^2(5 + y)$	
$\frac{dx}{dy} = \frac{\sin (5 + y) \cdot \cos y}{\sin^2(5 + y)} - \frac{\cos (5 + y) \cdot \sin y}{\sin^2(5 + y)}$	
$\frac{dx}{dy} = \frac{\sin(5 + y - y)}{\sin^2(5 + y)}$	
$\frac{dx}{dy} = \frac{\sin 5}{\sin^2(5+y)}$	
Gy Sm-(5 + y)	
Now $dy = 1$	
dx <u>dx</u> dy	
$\therefore \qquad dy = \sin^2(5+y)$	
$\therefore \qquad \underline{dy} = \frac{\sin^2(5+y)}{\sin 5}$	

03.

$$01. \int_{4}^{7} \frac{(11-x)^{2}}{x^{2} + (11-x)^{2}} dx \qquad \dots \qquad (1)$$

$$u_{SING} \int_{0}^{b} f(x) dx = \int_{b}^{b} f(\alpha + b - x) dx$$

$$I = \int_{4}^{7} \frac{(11 - (4 + 7 - x))^{2}}{(4 + 7 - x)^{2} + (11 - (4 + 7 - x))^{2}} dx$$

$$I = \int_{4}^{7} \frac{(11 - (11 - x))^{2}}{(11 - x)^{2} + (11 - (11 - x))^{2}}$$

$$I = \int_{4}^{7} \frac{(11 - (11 - x))^{2}}{(11 - x)^{2} + (11 - 11 + x)^{2}} dx$$

$$I = \int_{4}^{7} \frac{x^{2}}{(11 - x)^{2} + x^{2}} dx \qquad \dots \qquad (2)$$

$$(1) + (2)$$

$$2I = \int_{4}^{7} \frac{(11 - x)^{2} + x^{2}}{(11 - x)^{2} + x^{2}} dx$$

$$2I = \int_{4}^{7} 1 dx$$

$$2I = (x) \int_{4}^{7} 1$$

$$2I = -(x) \int_{4}^{7} 1$$

(08)

$$92. \qquad \int \frac{x^2}{x^4 + 5x^2 + 6} dx$$

$$\int \frac{x^2}{(x^2 + 2)(x^2 + 3)} dx$$
SOLUTION
$$\frac{x^2}{(x^2 + 2)(x^2 + 3)} = \frac{A}{x^2 + 2} + \frac{B}{x^2 + 3}$$

$$\frac{x^2}{(x^2 + 2)(x^2 + 3)} = \frac{A}{x^2 + 2} + \frac{B}{x^2 + 3}$$

$$\frac{x^2}{x^2 + 1} (xy)$$

$$\frac{1}{(1 + 2)(1 + 3)} = \frac{A}{1 + 2} + \frac{B}{1 + 3}$$

$$t = A(1 + 3) + B(1 + 2)$$
Put $t = -3$

$$-3 = B(-3 + 2)$$

$$-3 = B(-1) \quad \therefore B = 3$$
Put $t = -2$

$$-2 = A(-2 + 3)$$

$$-2 = A(1) \quad \therefore A = -2$$
THEREFORE
$$\frac{1}{(1 + 2)(1 + 3)} = \frac{-2}{1 + 2} + \frac{3}{1 + 3}$$
HENCE
$$\frac{x^2}{(x^2 + 2)(x^2 + 3)} = \frac{-2}{x^2 + 2} + \frac{3}{x^2 + 3}$$
BACK IN THE SUM
$$= \int \frac{-2}{x^2 + 2} + \frac{3}{x^2 + 3} dx$$

$$= \int \frac{-2}{x^2 + 2^2} + \frac{3}{x^2 + 3} dx$$

$$= \int \frac{-2}{x^2 + 2^2} + \frac{3}{x^2 + 3} dx$$

$$= \int \frac{-2}{x^2 + 2^2} + \frac{3}{x^2 + 3^2} dx$$

$$= -2 \cdot \frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{x}{\sqrt{2}}\right) + 3 \cdot \frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{x}{\sqrt{3}}\right) + c$$

A = $\begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{pmatrix}$ Verify : A.(adj A) = (adj A).A = |A|.I 03. COFACTOR'S $A_{11} = (-1)^{1+1} \begin{vmatrix} 0 & -2 \\ 0 & 3 \end{vmatrix} = 1(0-0) = 0$ $A_{12} = (-1)^{1+2} \begin{vmatrix} 3 & -2 \\ 1 & 3 \end{vmatrix} = -1(9+2) = -11$ $A_{13} = (-1)^{1+3} \begin{vmatrix} 3 & 0 \\ 1 & 0 \end{vmatrix} = 1(0-0) = 0$ $A_{21} = (-1)^{2+1} \begin{vmatrix} -1 & 2 \\ 0 & 3 \end{vmatrix} = -1(-3 - 0) = 3$ $A_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix} = 1(3-2) = 1$ $A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & -1 \\ 1 & 0 \end{vmatrix} = -1(0+1) = -1$ $A_{31} = (-1)^{3+1} \begin{vmatrix} -1 & 2 \\ 0 & -2 \end{vmatrix} = 1(2-0) = 2$ $A_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 2 \\ 3 & -2 \end{vmatrix} = -1(-2-6) = 8$ $A_{33} = (-1)^{3+3} \begin{vmatrix} 1 & -1 \\ 3 & 0 \end{vmatrix} = 1(0+3) = 3$ COFACTOR MATRIX OF A

ADJ A = TRANSPOSE OF THE COFACTOR MATRIX $= \begin{pmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{pmatrix}$ | **A** | = 1(0+0) + 1(9+2) + 2(0-0)= 11 LHS 1 = A.(adj A) $= \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{pmatrix}$ $= \begin{pmatrix} 0+11+0 & 3-1-2 & 2-8+6 \\ 0-0-0 & 9+0+2 & 6+0-6 \\ 0-0+0 & 3+0-3 & 2+0+9 \end{pmatrix}$ $= \begin{pmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{pmatrix}$ LHS 2 = (adj A). A $= \begin{pmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{pmatrix}$ $= \begin{pmatrix} 0+9+2 & 0+0+0 & 0-6+6 \\ -11+3+8 & 11+0+0 & -22-2+24 \\ 0-3+3 & 0-0+0 & 0+2+9 \end{pmatrix}$ $= \begin{pmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{pmatrix}$ RHS = |A|.I $11 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{pmatrix}$ A.(adj A) = (adj A).A = |A|.I HENCE

Q4. (A)Attempt any six of the following 01. Find correlation coefficient between x and y for the following data $n = 100, \overline{x} = 62, \overline{y} = 53, \sigma x = 10, \sigma y = 12, \Sigma(x - \overline{x})(y - \overline{y}) = 8000$ SOLUTION $r = \frac{cov(x, y)}{\sigma x \cdot \sigma y}$

$$= \frac{\sum (x - \overline{x})(y - \overline{y})}{n}$$
$$= \frac{\frac{8000}{10.12}}{10.12}$$

$$= \frac{80}{10.12}$$
$$= \frac{2}{3}$$

a building is insured for 80% of its value. The annual premium at 70 paise percent amounts to Rs 2,800. Fire damaged the building to the extent of 60% of its value. How much amount for damage can be claimed under the policy

SOLUTION

Property value = $\cdot x$ Insured value = $\frac{80x}{100}$ = $\frac{4x}{5}$ Rate of premium = 70 paise percent = 0.70% = • 2800 Premium $= \frac{0.70}{100} \times \frac{4x}{5}$ 2800 $= \frac{7}{1000} \times \frac{4x}{5}$ 2800 $= \frac{28x}{5000}$ 2800 $= 100 \times 5000$ х х = 5,00,000 Property value = • 5,00,000

SECTION - II

(12)

Loss	=	<u>60</u> x 5,00,000 100
	=	• 3,00,000
Claim		= 80% of loss
	=	80 x 3,00,000
	=	• 2,40,000

03. The coefficient of rank correlation for a certain group of data is 0.5. If $\sum d^2 = 42$, assuming no ranks are repeated; find the no. of pairs of observation

SOLUTION

 $R = 0.5 ; \Sigma d^{2} = 42$ $R = 1 - \frac{6\Sigma d^{2}}{n(n^{2} - 1)}$ $0.5 = 1 - \frac{6(42)}{n(n^{2} - 1)}$ $\frac{6(42)}{n(n^{2} - 1)} = 1 - 0.5$ $\frac{6(42)}{n(n^{2} - 1)} = 0.5$ $\frac{6(42)}{n(n^{2} - 1)} = \frac{1}{2}$ $n(n^{2} - 1) = 6 \times 42 \times 2$ $n(n^{2} - 1) = 3 \times 2 \times 3 \times 2 \times 7 \times 2$ $(n - 1).n.(n + 1) = 7 \times 8 \times 9$ On comparing , n = 8

04. Maya and Jaya started a business by investing equal amount. After 8 months Jaya withdrew her amount and Priya entered the business with same amount of capital. At the end of the year there was a profit of • 13,200. Find their share of profit

SOLUTION

STEP 1 : Profits will be shared in the 'RATIO OF PERIOD OF INVESTMENT'

	MAY	Ą	JAYA		PRIYA	
=	12	:	8	:	4	—
						TOTAL = 24

<u>STEP 2 :</u>

PROFIT = • 13,200	
Maya's share of profit	$1100 = 12 \times \frac{13,200}{24} = \cdot 6,600$
Jaya's share of profit	$2 = \frac{1100}{24} = \cdot 4,400$
Priya'sshare of profit	$= \underbrace{4 \times 13,200}_{-24} = \cdot 2,200$

05. Calculate CDR for district A and B and compare

Age	DISTRIC	CT A	DISTRIC	CT B			
Group	NO. OF	NO. OF	NO. OF	NO. OF			
(Years)	PERSONS	DEATHS	PERSONS	DEATHS			
	Р	D	Р	D			
0 – 10	1000	18	3000	70			
10 - 55	3000	32	7000	50			
Above 55	2000	41	1000	24			
	ΣP = 6000	ΣD = 91	ΣP = 11000	ΣD = 144			
CDR(A	$A) = \frac{\Sigma D x}{\Sigma P}$	CDR(B) =	<u>Σ D</u> x 1000 Σ P				
	$= \frac{91 \text{ x}}{6000}$	=	<u>144</u> x 100 11000				
	= 15.17	=	13.09				

COMMENT : CDR(B) < CDR(A) . HENCE DISTRICT B IS HEALTHIER THAN DISTRICT A

06. the probability distribution function of continuous random variable X is given by

 $f(x) = \frac{x}{4}, \quad 0 < x < 2$ $= 0, \quad \text{otherwise} \qquad \text{Find } P(x \le 1)$

SOLUTION

the pdf of continuous random variable X is given by

$$f(x) = \frac{x}{4} ; \quad 0 < x < 2$$

$$= 0 ; \quad \text{otherwise}$$

$$P(x \le 1) = \int_{0}^{1} \frac{x}{4} dx$$

$$= \left(\frac{x^{2}}{8}\right)_{0}^{1}$$

$$= \left(\frac{x^{2}}{8}\right)_{0}^{1}$$

$$= \left(\frac{8}{8}\right) - \left(\frac{8}{8}\right)$$

$$= \frac{1}{8}$$

07. The ratio of incomes of Salim & Javed was 20:11. Three years later income of Salim has increased by 20% and income of Javed was increased by Rs 500. Now the ratio of their incomes become 3 : 2. Find original incomes of Salim and Javed

SOLUTION

Let income of Salim	= 20x
Income of Javed	= 11x
As per the given condition	on
$\frac{20x + 20}{100}(20x)$ $\frac{11x + 500}{100}$	$=$ $\frac{3}{2}$
$\frac{20x + 4x}{11x + 500}$	$=$ $\frac{3}{2}$
$\frac{24x}{11x + 500}$	$=$ $\frac{3}{2}$
48x	= 33x + 1500
15x	= 1500
x =	100
Salim's original income	= 20(100) = • 2000
Javed's original income	= 11(100) = • 1100

08. for an immediate annuity paid for 3 years with interest compounded at 10% p.a. its present value is Rs 10,000. What is the accumulated value after 3 years (1.1³ = 1.331)

SOLUTION

 $A = P(1 + i)^{n}$

- $= 10000(1 + 0.1)^3$
- = 10000(1.1)³
- = 10000(1.331)
- = · 13,310

Q5. (A)Attempt any Two of the following (06) a new treatment for baldness is known to be effective in 70% of the cases treated . Four bald 01. members from different families are treated . Find the probability that (i) at least one member is successfully treated (ii) exactly 2 members are successfully treated SOLUTION 4 bald members from different families are treated n = 4For a trial Success - a defective pen p - probability of success = 70/100 = 7/10q - probability of failure = 1 - 7/10 = 3/10X ~ B (4, 7/10) r.v. X - no of successes = 0, 1, 2, 3, 4a) P(at least one member is successfully treated) $= P(X \ge 1)$ $= P(1) + P(2) + \dots + P(4)$ = 1 - P(0)= $1 - 4C_0 \cdot p^0 \cdot q^4$ $= 1 - {}^{4}C_{0} \left(\frac{7}{10}\right)^{0} \left(\frac{3}{10}\right)^{4}$ = 1 - <u>1.1.81</u> 10000 = 1 - 0.0081 = 0.9919 b) P(exactly 2 members are successfully treated) = P(X = 2) $= {}^{4}C_{2} \cdot p^{2} \cdot q^{2}$ $= {}^{4}C_{2}\left(\frac{7}{10}\right)^{2}\left(\frac{3}{10}\right)^{2}$ $= \frac{6.49.9}{10^4}$ = <u>2646</u> = 0.2646

02. Compute rank correlation coefficient for the following data

Rx :	1	2	3	4	5	6
Ry :	6	3	2	1	4	5

SOLUTION

x	У	d = x - y	d ²	$R = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$
1	6	5	25	
2	3	1	1	$= 1 - \frac{6(38)}{6(36 - 1)}$
3	2	1	1	= 1 - <u>38</u>
4	1	3	9	35
5	4	1	1	$= -\frac{3}{35}$
6	5	1	1	= -0.086
			$\Sigma d^2 = 38$	

03. the income of the agent remains unchanged though the rate of commission is increased from 5% to 6.25%. Find the percentage reduction in the value of the business SOLUTION

Let initial sales	=	• 100
Rate of commission	=	5%
∴ Commission	=	• 5
Let the new sales	=	• x
Rate of commission	=	6.25%
:. Commission	=	6.25x 100

Since the income of the broker remains unchanged

$$\frac{6.25}{100} x = 5$$

x = $\frac{5 \times 100 \times 100}{625}$
x = 80
∴ new sales = • 80

Hence percentage reduction in the value of the business = 20%

(B) Attempt any Two of the following

01. A warehouse valued at • 10,000 contained goods worth • 60,000. The warehouse was insured against fire for • 4,000 and the goods to the extent of 90% of their value. A fire broke out and goods worth • 20,000 were completely destroyed, while the remainder was damaged and reduced to 80% of its value. The damage to the warehouse was to the extent of • 2,000. Find the total amount that can be claimed SOLUTION :

WAREHOUSE

Property value	=	• 10,000
Insured value	=	• 4,000
Loss	=	• 2,000
Claim	=	<u>insured val.</u> x loss Property val.
	=	<u>4,000</u> x 2,000 10,000
	=	• 800

STOCK IN WAREHOUSE

Value of stock	=	• 60,000
Insured value Loss	=	90% of the stock

Note : Since the remainder was reduced to 80% of its value the loss on it is 20%

- $= 20,000 + \frac{20}{100}(60,000 20,000)$
- $= 20,000 + \frac{20}{100}(40,000)$
- = 20,000 + 8,000
- = 28,000

Since 90% of the stock was insured

Claim	= 90% of loss
	$= \frac{90}{100} \times 28,000$
	= 25,200
Hence	
Total claim	= 800 + 25,200
	= • 26,000

 02.
 X
 :
 6
 2
 10
 4
 8

 Y
 :
 9
 11
 ?
 8
 7

Arithmetic means of X and Y series are 6 and 8 respectively. Calculate correlation coefficient **SOLUTION**:

$$y = \sum y$$
 8 = $9 + 11 + b + 8 + 7$
n 5

40

$$= 35 + b$$
 $b = 5$

	1			1	1	1
х	У	x-x	y-y	$(x - \overline{x})^2$	$(y - \overline{y})^2$	$(x - \overline{x})(y - \overline{y})$
6	9	0	1	0	1	0
2	11	-4	3	16	9	-12
10	5	4	-3	16	9	-12
4	8	-2	0	4	0	0
8	7	2	-1	4	1	-2
30	40	0	0	40	20	-26
ΣΧ	Σy	$\Sigma(x-\overline{x})$	$\Sigma(y-\overline{y})$	$\Sigma(x-\overline{x})^2$	$\Sigma(y-\overline{y})^2$	$\Sigma(x-\overline{x})(y-\overline{y})$
$\overline{x} = 6 \overline{y} = 8$						

$$r = \frac{\Sigma (x - \overline{x}) \cdot (y - \overline{y})}{\sqrt{\Sigma (x - \overline{x})^2} \sqrt{\Sigma (y - \overline{y})^2}}$$

$$r = \frac{-26}{\sqrt{40 \times \sqrt{20}}}$$

$$r = \frac{-26}{\sqrt{40 \times 20}}$$

$$r' = \frac{26}{\sqrt{40 \times 20}}$$

taking log on both sides

 $\log r' = \log 26 - \frac{1}{2} \left[\log 40 + \log 20 \right]$ $\log r' = 1.4150 - \frac{1}{2} \left[1.6021 + 1.3010 \right]$ $\log r' = 1.4150 - \frac{1}{2} \left(2.9031 \right)$ $\log r' = 1.4150 - 1.4516$ $\log r' = \overline{1.9634}$ $r' = AL(\overline{1.9634}) = 0.9191$ r = -0.9191 03. a bill of • 7,500 was discounted for • 7290 at a bank on 28th October 2006. If the rate of interest was 14% p.a., what is the legal due date

SOLUTION

	@ 14% p.a.	
↓	d days	•
5 th Jan	28 th Oct ———	→ ś
	• 7,290	• 7,500
STEP 1: Let Unexpired per	riod = d days	
STEP 2 :		
B.D. = F.V 0	C.V.	

= 7,500 - 7,290

= · 210

STEP 3 :

B.D. = Interest on F.V. for 'd' days @ 14% p.a.

$$15$$

$$210 = -7500 \times d \times 14$$

$$-73$$

$$73$$

$$d = 210 \times 73$$

$$15 \times 14$$

d = 73 days

STEP 4:

Legal Due date

= 28th Oct + 73 days OCT NOV DEC JAN = 3 + 30 + 31 + 9 = 9th January 2007

Q6. (A) Attempt any Two of the following

01. The number of complaints which a bank manager receives per day is a Poisson random variable with parameter m = 4. Find the probability that the manager will receive at most two complaints on any given day ($e^{-4} = 0.0183$)

SOLUTION

m = average number of complaints a bank manager receives per day = 4 r.v X ~ P(4)

P(at most two complaints on any given day)

 $= P(x \le 2)$ = P(0) + P(1) + P(2) $= \frac{e^{-4} \cdot 4^{0}}{0!} + \frac{e^{-4} \cdot 4^{1}}{1!} + \frac{e^{-4} \cdot 4^{2}}{2!} \quad \text{Using} \quad P(x) = \frac{e^{-m} \cdot m^{x}}{x!}$ $= e^{-4} \cdot \left(\frac{1}{1} + \frac{4}{1} + \frac{16}{2}\right)$ = 0.0183 (1 + 4 + 8) = 0.0183(13) = 0.2379

Page 26 of 33

02. Suppose X is a random variable with pdf

$$f(x) = \frac{c}{x} ; 1 < x < 3 ; c > 0$$
Find c & E(X)
$$i) \qquad 3 \\ \int \frac{c}{x} \frac{c}{x} dx = 1$$

$$c \qquad 3 \\ \int \frac{1}{x} dx = 1$$

$$c \qquad \left[\log x \right]_{1}^{3} = 1$$

$$c \qquad \left[\log 3 - \log 1 \right] = 1$$

$$c \qquad \log 3 = 1$$

$$c \qquad \log 3 = 1$$

$$c \qquad = \frac{1}{\log 3}$$

Hence X is a r.v. with pdf

$$f(x) = \frac{1}{x \log 3}$$
; $1 < x < 3$

ii)
$$E(x) = \int_{1}^{3} x \cdot f(x) dx$$

$$= \int_{1}^{3} x \cdot \frac{1}{x \cdot \log 3} dx$$

$$= \int_{1}^{3} \frac{1}{\log 3} dx$$

$$= \left(\frac{x}{\log 3}\right)_{1}^{3}$$

$$= \left(\frac{3}{\log 3}\right) - \left(\frac{1}{\log 3}\right) = \frac{2}{\log 3}$$

03. In a factory there are six jobs to be performed, each of which should go through machines A and B in the order A - B. Determine the sequence for performing the jobs that would minimize the total elapsed time T . Find T and the idle time on the two machines Job J2 Jl JЗ J4 J5 J6 3 8 3 5 6 ΜA 1 5 6 3 2 2 10 Mв Step 1 : Finding the optimal sequence Min time = 1 on job J1 on machine M1. Place the job at the start of the sequence J1 Next min time= 2 on jobs J4 & J5 on machine MB. Place the jobs at the end of the sequence randomly Jı J4 J5 **Placed Randomly** Next min time = 3 on jobs $J_2 \& J_6$ on machine M_A and on job J_3 on machine Μв respectively . Place J_2 & J_6 at the start next to J_1 randomly and J_3 at the end next to J4 Jı J4 J5 J3 J2 Ĵ۶ **Placed Randomly OPTIMAL SEQUENCE** J1 J2 J۵ J3 J4 J5 Step 2 : Work table According to the optimal sequence Job J1 J2 J۶ JЗ J4 J5 total process time 3 3 Ma 1 8 5 6 26 hrs = 2 Μв 5 6 10 3 2 28 hrs = WORK TABLE Page 28 of 33

	N	١٨	М	8	Idle time
JOBS	IN	OUT	IN	OUT	on MB
Jı	0	1	1	6	1
J ₂	1	4	6	12	
٦٩	4	7	12	22	
J3	7	15	22	25	
J4	15	20	25	27	
J5	20	26	27	29	

Step 3 :

Total elapsed time T = 29 hrs

Idle time on MA = T - $\left(sum \text{ of processing time of all 6 jobs on M1}\right)$ = 29 - 26 = 3 hrs

Idle time on M_B = T - $\left(\text{sum of processing time of all 6 jobs on M2} \right)$ = 29 - 28 = 1 hr

Step 4 : All possible optimal sequences :

$$J_1 - J_2 - J_6 - J_3 - J_4 - J_5$$

$$OR$$

$$J_1 - J_6 - J_2 - J_3 - J_4 - J_5$$

$$OR$$

$$J_1 - J_2 - J_6 - J_3 - J_5 - J_4$$

$$OR$$

$$J_1 - J_6 - J_2 - J_3 - J_5 - J_4$$

01. a pharmaceutical company has four branches, one at each city A, B, C and D. A branch manager is to be appointed one at each city, out of four candidates P, Q, R and S. The monthly business depends upon the city and effectiveness of the branch manager in that city

			CI	ITY		
		А	В	С	D	_
-	Р	11	11	9	9	_
BRANCH	Q	13	16	11	10	MONTHLY BUSINESS (IN LACS)
MANAGER	R	12	17	13	8	
	S	16	14	16	12	

Which manager should be appointed at which city so as to get maximum total monthly business .

6	6	8	8	Subtracting all the elements in the matrix from
4	1	6	7	its maximum
5	0	4	9	The matrix can now be solved for 'MINIMUM'
1	3	1	5	
0	0	2	2	Reducing the matrix using 'ROW MINIMUM'
3	0	5	6	
5	0	4	9	
0	2	0	4	
0	0	2	0	Reducing the matrix using 'COLUMN MINIMUM'
3	0	5	4	
5	0	4	7	
0	2	0	2	
0	×	2	×	 Allocation using 'single zero row-column method'
3	0	5	4	 Allocation incomplete (3rd row unassigned)
5	×	4	7	
×	2	0	2	
0	X	2	X	 Drawing min. no. of lines to cover all '0's
√ 3	¢	5	4	
√ 5	×	4	7	
·····X·····	2		2	
	\checkmark			

	0	3	2	0	Revise the matrix
	0	0	2	1	Reducing all the uncovered elements by its
	2	0	1	4	minimum and adding the same at the
	0	4	0	2	intersection
	X	3	2	0	 Reallocation using 'SINGLE ZERO ROW-COLUMN METHOD'
	0	×	2	1	 Since all rows contain an 'assigned zero', the
	2	0	1	4	assignment problem is complete
	×	4	0	2	
	Optimo	al Assigr	nment :	P – D ;	Q – A; R – B; S – C
				Maxim	um business = 9 + 13 + 17 + 16 = 55(lacs)
02.	Informo	ition on v	vehicles (ir	n thousan	ds) passing through seven different highways during a day (X)

and number of accidents reported (Y) is given as

 $\Sigma x = 105 \ ; \ \ \Sigma y = 409 \qquad ; \ \ \Sigma x^2 = 1681 \qquad ; \ \ \Sigma y^2 = 39350 \ ; \ \ \Sigma xy = 8075 \quad .$

Obtain linear regression of Y on X

SOLUTION

$$\overline{x} = \underline{\Sigma x}$$
 = 105 = 15
 $\overline{y} = \underline{\Sigma y}$ = 409 = 58.43
 $\overline{y} = \overline{\Sigma y}$ = 7

byx =
$$\frac{n\Sigma xy - \Sigma x.\Sigma y}{n\Sigma x^2 - (\Sigma x)^2}$$

 $= \frac{7(8075) - (105)(409)}{7(1681) - (105)^2}$

 $= \frac{56525 - 42945}{11767 - 11025}$

= <u>13580</u>_____

LOG CALC
4.1329 - 2.8704
AL 1.2625
18.30

= 18.30

Equation

 $y - \overline{y} = byx (x - \overline{x})$ y - 58.43 = 18.30(x - 15) y - 58.43 = 18.30x - 274.5 y = 18.30x - 274.50 + 58.43y = 18.30x - 216.07

STEP 3 :

CORNERS	$z = 3x_1 + 2x_2$	
A(0,10)	3(0) + 2(10) = 0 + 20	= 20
B(1, 5)	3(1) + 2(5) = 3 + 10	= 13
C(4,2)	3(4) + 2(2) = 12 + 4	= 16
D(12,0)	3(12) + 2(0) = 36 + 0	= 36
OPTIMAL SOLUTIO	N : Zmin = 13 at (1,5)	

x—x—x—x—x—x—x—x—x